0
4363
Газета Интернет-версия

14.09.2016 00:01:00

Созданы искусственные аналоги живых систем

Тэги: биология, нейробиология


биология, нейробиология Биосинапс (слева) и нанопроволочный на чипе: Biological spikes – биоимпульсы, Artificial – искусственные, Biological EPSC – постсинаптические биотоки возбуждения. Изображение Physorg

В свое время вспыхнул, подобно искре, и быстро исчез термин «бионика», подразумевавший использование, например в электронике, принципов организации живого (о котором наука в те времена имела довольно смутное представление). Сегодня на основе гораздо более глубокого молекулярного знания говорят о биоинженерном подходе к решению разного рода практических задач, в том числе и борьбы с недугами человека, например нейродегенеративными расстройствами и онкологческими заболеваниями.

Нейробиологи полагают, что мозг своими уникальными возможностями обязан сонму синапсов, которые взаимодействуют между собой через так называемые синаптические щели. Каждый нейрон содержит около 10 тыс. отростков-синапсов. К ним от тела нервной клетки подается сигнал, действие которого выделяет в синаптическую щель молекулы нейромедиаторов (трансмиттеров), которые соединяются с белковыми рецепторами «адресата». Так с помощью химического механизма происходит передача импульса (последний может генерироваться действием света, механическим раздражением и т.д.). Прохождение импульса ненадолго отключает нейрон, но через некоторое время готовность к возбуждению восстанавливается, давая до 10 разрядов в секунду.

Для сравнения. Первая советская ЭВМ совершала до 2 тыс. операций в секунду. Сегодня суперкомпьютеры работают со скоростью более 50 квадрильонов, потребляя около 20 МВт мощности. Мозгу, с его 1015 синапсов, нужно всего 20 Вт, которые лишь докрасна разогреют нить лампочки накаливания (энергии суперкомпа хватит на миллион лампочек).

Белковая наночастица, «подсвеченная» молекулами зеленого протеина.	Изображение Physorg
Белковая наночастица, «подсвеченная» молекулами зеленого протеина. Изображение Physorg
Число синапсов приблизительно, потому что они образуются и распадаются за десяток-другой секунд. И они весьма капризны в силу действия комплекса протеинов, способных функционировать в узких температурных (не выше 40 градусов) и кислотных диапазонах.

Отсюда понятен интерес к публикации в журнале Science Advances, рассказывающей о фабрикации с помощью широко применяющейся в микроэлектронике литографии транзисторов-синапсов. Использовалась органическая нанопроволока средней длиной 200–300 нанометров (нм). На стандартном 4-дюймовом диске сотрудники Корейского университета науки и технологии разместили 144 искусственных синапса, показывающих те же функциональные параметры, что и биосоединения, – наличие импульсов, приводящих к генерации постсинаптических токов возбуждения.

Остается добавить, что чиповый синапс работал при нагревании до 80 градусов и потреблял всего 1,23 фемтоджоулей (то есть 1,23 х 10-15) энергии на каждый импульс. Корейцы надеются, что их достижение будет по достоинству оценено во всем электронном мире.

На меньшее, но все же признание возлагают надежды и конструкторы протеиновых наночастиц, воспроизводящих своей 20-гранной (икосаэдрической) структурой знаменитые геодезические купола Фуллера. Проблема, однако, в том, что их не воспринимают клетки, и к тому же их полость мала для переноса лекарств. Журнал Nature опубликовал результаты испытаний белковых икосаэдрических наночастиц диаметром 25 нм, полученных в Университете штата Вашингтон в г. Сиэтле. В их полости можно будет вносить в раковые клетки блокаторы стимулирующих деление ферментов.

Белковый икосаэдр – наночастица диаметром 25 нанометров, в полости которой лекарства можно вносить в цитоплазму клеток. 	Изображение Physorg
Белковый икосаэдр – наночастица диаметром 25 нанометров, в полости которой лекарства можно вносить в цитоплазму клеток. Изображение Physorg

Для «подсветки» протеиновых наночастиц использовали светящийся зеленым белок. Это позволяет видеть их распределение при адресной атаке злокачественных клеток. Данный подход уже получил название «тераностика», так как он сочетает в себе одновременно терапию и диагностику.

Другое направление избрали авторы журнала «Труды АН США» (PNAS), разрабатывающие метод борьбы с клетками анапластического рака щитовидной железы (АТС). На приведенных фото молекулы фермента, подстегивающего клеточное деление, светятся красным, а белок актин в нарушенном скелете раковой клетки – зеленым. Это свечение обусловлено зеленым флюоресцирующим протеином (GFP), ген которого сшили с актиновым, поэтому при синтезе клеткой актина она «зажигает» зеленым светом.

Опыты, проведенные с культурой анапластических клеток, поглотивших наночастицы с терапевтической РНК, показали, что клеточная миграция уменьшилась в 15 раз. Уменьшилось число метастазов и у мышей с моделью АТС, у которых резко замедлился рост опухолей.


Комментарии для элемента не найдены.

Читайте также


В электоральный онлайн смогут войти более 30 регионов

В электоральный онлайн смогут войти более 30 регионов

Дарья Гармоненко

Иван Родин

Дистанционное голосование массированно протестируют на низовых выборах

0
229
Судебная система России легко заглотила большого генерала

Судебная система России легко заглотила большого генерала

Иван Родин

По версии следствия, замглавы Минобороны Иванов смешал личные интересы с государственными

0
380
Фемида продолжает хитрить с уведомлениями

Фемида продолжает хитрить с уведомлениями

Екатерина Трифонова

Принимать решения без присутствия всех сторон процесса получается не всегда

0
281
Turkish Airlines перестала продавать билеты из России в Мексику

Turkish Airlines перестала продавать билеты из России в Мексику

0
163

Другие новости