Мир все более входит в эпоху бурного развития нанотехнологий, которые обещают резкое снижение энергопотребления и переход к квантовым компьютерам. Пленочные, или, по-другому, 2D-материалы на основе модификаций графена делают реальным, например, создание прочной керамики с регулируемой проводимостью.
В университете Райса в техасском Хьюстоне обнаружили, что так называемый белый графен, представляющий собой ячеистую структуру, атомы углерода в которой заменены на бор и азот (hBN – hexagonal boron-nitride), резко меняет свойства силиката кальция. Последний – основа тоберморита, использовавшийся еще римлянами в качестве цемента (mortar), откуда и название минерала: от того же корня и название смертоносной мортиры. Внедрение hBN между слоями силиката делает его в три раза прочнее и на 25% устойчивее к повороту вокруг оси.
Оказалось также, что hBN повышает устойчивость минерала к тепловым и радиационным нагрузкам. Добавка 2D-слоя делает материал предпочтительнее по сравнению с добавлением углеволокна и нанотрубок, а также других наполнителей. Связано это с тем, что две поверхности слоя резко увеличивают площадь и, следовательно, энергию взаимодействия с атомами кальция и кремния.
В феврале 2019 года та же группа исследователей сообщила о дальнейших успехах применения hBN в сочетании с графеном. Эти графеновые «присадки» повышают эластичность и устойчивость к механическим стрессам минерала. Известно, что при эластических нагрузках материалы ведут себя подобно резине, легко восстанавливая исходную форму. Однако при увеличении силы воздействия они начинают испытывать пластическое напряжение, что ведет к деформациям и нарушению кристаллической решетки. Совместное действие hBN и графена (GBN) снимает эти проблемы.
Нитрид бора (желто-голубые шарики) с графеном (черные шарики) в силикате. |
То же характерно и для других 2D-пленок, таких как дисульфид молибдена и диселенид ниобия (MoS2 и NbSe2). Такого рода переключатели найдут широкое применение в контроле прочности различных материалов и сооружений.
Холодные атомы, удерживаемые вокруг оптоволокна. Иллюстрации Physorg |
Пленка, производство квадратного метра которой обходится в смешные 2 евро, может использоваться для штрих- и QR-кодов. Преимущество немецкой технологии с разрешением более 700 точек/дюйм связано с тем, что их светящиеся теги не требуют электроники для своего считывания.
Легко используемая в повседневной жизни пленка толщиной 50 мк, конечно же, неприменима в квантовой электродинамике. Там работают с характерными размерами не больше 0,5 мк. Ученые Сорбонны взяли обычное стекловолокно и уменьшили его диаметр до 400 нанометров (нм) на расстоянии 1 см. Это позволило создать световую – фотонную – ловушку, удерживающую в вакууме до 2000 холодных атомов на расстоянии 200 нм от поверхности оптоволокна. Запись информации осуществляется с помощью слабого импульса, генерирующего одиночный фотон в волокне. Он генерирует коллективное возбуждение всей атомной цепочки. Извлечение и считывание информации осуществляется с помощью внешнего импульса, посылаемого атомному ансамблю.
Французы полагают, что им удалось создать первую, пока примитивную, квантовую сеть, которую можно связать с квантовым узлом. Авторитетности публикации в журнале Nature придает то, что ранее та же группа сообщала об остановке света в оптоволокне и реализации надежной сохранности информации в квантовой памяти.
комментарии(0)