0
4787
Газета Наука Интернет-версия

22.03.2006 00:00:00

Персидский залив XXI века

Эрик Галимов

Об авторе: Эрик Михайлович Галимов - директор Института геохимии и аналитической химии им. В.И. Вернадского РАН, академик, член президиума РАН.

Тэги: луна, гелий3, колонизация


луна, гелий-3, колонизация Колонизация Луны – это давняя 'фишка' человечества.
Джек Коггинс, 'Лунная станция', 1952 г.

Ученые заговорили о возможности использования привозимого с Луны гелия-3 (3Не) в конце 80-х – начале 90-х годов. Первая публикация на эту тему появилась в 1987 году. В 1995 году на заседании президиума Российской академии наук был поставлен доклад «О необходимости возвращения к исследованиям Луны». В числе других была упомянута проблема скорого исчерпания энергетических ресурсов и возможное ее решение в будущем за счет гелия-3, привозимого с Луны. В 1998 году в Москве состоялась 3-я Международная конференция по исследованию и освоению Луны, на которой двое американских ученых сделали сообщение под интригующим названием: «3Не на Луне – Персидский залив XXI века». В 2003 году президиум РАН обсудил доклад «О состоянии исследования Луны и планет», в котором снова был поставлен вопрос о гелии-3. На этот раз проблема была услышана.

Проблема энергоресурсов

Нефть и газ сегодня занимают 60–80% в мировом энергобалансе. Существуют разные оценки, но в любом случае углеводородное топливо при современных объемах потребления будет исчерпано до конца этого века. Умеренные оценки предсказывают истощение запасов через 40–50 лет.

Энергопотребление на планете неизбежно будет возрастать. К 2050 году ожидается увеличение населения Земли вдвое. Развивающиеся страны резко наращивают экономический потенциал, в особенности Китай и Индия. Если потребление энергии в этих странах на душу населения приблизится к энергопотреблению в США, Европе и Японии, то мировое энергопотребление может возрасти в 5–8 раз.

Каковы возможности замещения нефти и газа в энергобалансе? Существует немало альтернативных источников энергии. Однако даже в совокупности альтернативные источники не способны обеспечить полное замещение углеводородного топлива. Главный недостаток большинства из них в том, что они рассчитаны на потребление рассеянной энергии с малой удельной мощностью. Поэтому даже при теоретически больших ресурсах реальная возможность использования этих источников энергии ограниченна.

Какое бы место ни занимали в будущем альтернативные источники энергии, принципиальное разрешение энергетической проблемы может дать только использование ядерной энергии. Но развитие атомной энергетики сдерживается ее страшным недостатком: производством радиоактивных отходов. Человечество уже сегодня знакомо с последствиями развития ядерных технологий: устрашающими объемами накопленных радиоактивных отходов, необходимостью захоронения атомных реакторов и конструкционных материалов. Массовое развитие атомной энергетики в ее современном варианте неизбежно имело бы катастрофические последствия для экологии.

Термояд на основе гелия-3

Сегодня промышленная атомная энергия вырабатывается только за счет реакции деления ядер урана. Термоядерная энергия известна человечеству только в виде водородной бомбы. Над решением проблемы управляемого термоядерного синтеза наука бьется уже более 50 лет.

В настоящее время удалось почти вплотную приблизиться к цели. Полагают, что она будет достигнута в ближайшие годы при реализации Международного проекта исследовательского термоядерного реактора ИТЭР (ITER). Это будет ядерная реакция дейтерия (D) – тяжелого стабильного изотопа водорода, с тритием (Т) – тяжелым радиоактивным изотопом водорода. В результате образуется гелий-4 (4Не) – основной изотоп гелия и нейтроны.

Проблема радиоактивного загрязнения относится и к термоядерному синтезу, основанному на реакции: D + T> 4Не + n (нейтрон). Правда, радиоактивное загрязнение в этом случае меньше, чем при делении урана.

Реакция дейтерия с редким изотопом гелия-3 требует еще более высоких температур, то есть еще более трудно достижимых условий синтеза. Но главное и самое удивительное в том, что термоядерный синтез, основанный на использовании изотопа гелия-3, может быть экологически чистым. Кажется фантастичным, что существует термоядерный процесс, практически не несущий радиоактивности. Но это – факт.

Дело в том, что ядерная реакция с участием гелия-3 имеет одну особенность, которая делает ее уникальной. В ядерных реакциях, в том числе в реакции синтеза D + T, выделяется мощный, пронизывающий все вокруг поток нейтронов. Нейтроны – быстрые незаряженные (нейтральные) частицы. Они легко проникают внутрь любых материалов, взаимодействуют с химическими элементами и делают их радиоактивными. В реакции D + 3Не > 4Не + p (протон) выделяются не нейтроны, а протоны. С этим связан ряд замечательных преимуществ.

Во-первых, протоны, будучи заряженными частицами, не могут проникать в глубь конструкционных материалов. Поэтому в отличие от нейтронов они не делают эти материалы радиоактивными. Некоторая радиоактивность связана с побочной реакцией D + D. Идеальной была бы реакция 3Не + 3Не > 4Не + 2p. Но осуществление ее требует слишком жестких условий. Это – вопрос более отдаленного будущего. Тем не менее подавляющий выход термоядерной энергии в виде протонов делает реакцию с участием гелия-3, с одной стороны, высокоэффективной, а с другой – минимально радиоактивной.

Во-вторых, нейтроны не только наводят радиоактивность, но и вызывают радиационные повреждения материалов. Это очень быстро делает материалы непригодными к дальнейшему употреблению, требует их изъятия и захоронения в виде радиоактивных отходов. Протоны не повреждают материалы. В отсутствие нейтронного облучения конструкционные элементы термоядерного реактора, использующие гелий-3, могут служить очень долго, в отличие от материалов урановых реакторов и термоядерных реакторов, использующих реакцию дейтерий плюс тритий.

В-третьих, поскольку протоны – заряженные частицы, а электрический ток – это поток заряженных частиц, становится возможным прямое преобразование термоядерной энергии в электрическую, минуя тепловое преобразование. Это позволяет использовать в случае гелия-3 гораздо более эффективные инженерные решения для отбора энергии.

Наконец, в-четвертых, практическое отсутствие радиоактивности и взрывоопасности делает установки термоядерного синтеза на гелии-3 совершенно безопасными в аварийных условиях, в том числе в условиях природных катастроф, террористических актов и т.п.

Экологическая чистота и энергетическая эффективность делают термоядерный синтез на гелии-3 непревзойденным источником энергии. Солнце светит благодаря идущему в его недрах термоядерному синтезу. Овладев им, человечество приобщилось бы к эксплуатации вечного источника энергии.

Природа лунного гелия-3

Однако на пути к достижению конечной цели есть две большие трудности. Первая состоит в том, что гелия-3 практически нет на Земле. Он есть на Луне. Но возможно ли организовать его добычу и доставку на Землю? Насколько это экономически целесообразно?

Вторая трудность состоит в том, что на Земле пока отсутствует технология управляемого термоядерного синтеза. Задача не решена, несмотря на многолетние усилия, даже для более простой реакции синтеза на дейтерии (D) и тритии (Т). Синтез же с участием гелия-3 требует еще более жестких условий.

Прежде чем ставить сложную задачу освоения промышленного термоядерного синтеза на гелии-3, нужно оценить, насколько реальна добыча и доставка гелия-3 с Луны в необходимых количествах и каковы его запасы.

Луна, лишенная атмосферы и защитного магнитного поля, подвергается мощному облучению потоком испускаемых Солнцем легких атомов: водорода, гелия, углерода, азота и других. Этот поток, называемый солнечным ветром, попадает на поверхность Луны. Поскольку на Луне нет активных геологических процессов и круговорота веществ, находящийся на поверхности пылевидный материал, называемый реголитом, миллиарды лет накапливает частицы солнечного ветра, в том числе гелия.

Содержание гелия в реголите (лунном грунте) зависит от многих факторов. Прежде всего это – возраст реголита. Чем дольше облучается поверхность, тем больше накапливается в ней внедрившихся частиц солнечного ветра. Крупность зерен реголита также имеет значение. Слишком крупные зерна имеют малую относительную поверхность, а очень мелкие не удерживают гелий. Оптимальным является размер 20–50 микрон (0,02–0,05 мм). Концентрация гелия зависит также от минерального состава зерен реголита. Лучше всего гелий накапливается в ильмените – минерале, содержащем титан (FeTiO3). Луна богата этим минералом.

На каждый атом гелия-3 приходится 3000 атомов обычного гелия (4Не), от которого полезный гелий-3 нужно отделить. В одной тонне лунного реголита содержится в среднем всего около 10 миллиграммов 3Не.

Энергетическая ценность и запасы

Чтобы добыть одну тонну гелия-3, нужно переработать 100 млн. тонн лунного грунта, т.е. участок лунной поверхности площадью 20 квадратных километров на глубину 3 м.

Зато энергетическая мощность гелия-3 огромна. Одна тонна этого вещества обеспечивает работу агрегатов мощностью 10 Гвт (Гвт – миллион киловатт) в течение года. Энергетическая мощность электростанций России составляет 215 Гвт. Иначе говоря, для обеспечения России нужно приблизительно 20 тонн гелия-3 в год. Для обеспечения современной мировой потребности потребуется около 200 т гелия-3 в год. Во второй половине XXI века эта величина, возможно, возрастет до 800–1000 т/год. Запасы гелия-3 на Луне составляет около 1 млн. т. Таким образом, их хватит более чем на тысячу лет.

Экономическая целесообразность

Одна тонна гелия-3 заменяет 20 млн. тонн нефти. При современной стоимости нефти около 50 долларов за баррель стоимость 20 млн. тонн нефти составляет 10 млрд. долларов. Это и есть современная цена 1 тонны гелия-3.

Транспортировка одного килограмма груза на траектории Земля–Луна–Земля составляет сегодня приблизительно 20–40 тыс. долларов. Чтобы перевезти 1 т гелия-3, придется перевозить 2–5 т сопровождающего груза в виде контейнеров, охлаждающего оборудования и т.д. Таким образом, перевоз с Луны одной тонны гелия-3 обойдется в 100 млн. долларов. Кажется, огромная сумма. Но это всего лишь 1% того, что стоит энергия, которую одна тонна гелия-3 может обеспечить на Земле.

Для того чтобы организовать добычу 3Не на Луне в промышленных масштабах, потребуется развернуть на Луне целую индустрию. Во-первых, придется вскрыть и переработать лунный грунт на площади в сотни квадратных километров. Затем выделить гелий из реголита при температуре 600╠–800╠С. Из выделенного гелия нужно методами изотопного фракционирования получить чистый изотоп 3Не. Из каждого килограмма гелия можно получить максимум 0,3 грамма 3Не.

Гелий-3 для целей транспортировки придется сжижать. С процессом сжижения и хранения жидкого гелия неизбежно связаны потери. Понятно, что первоначальные затраты, связанные с завозом оборудования, развертыванием лунной базы и организацией крупномасштабной добычи, будут велики. В то же время следует учесть, что в инженерном отношении все эти процедуры хорошо известны и достаточно просты. Гелий заключен в сорбированном состоянии в рыхлом грунте, залегающем на самой поверхности. Поэтому после создания необходимого производства расходы на добычу и эксплуатацию соответствующей инфраструктуры должны быть умеренными.

По расчетам американского астронавта Гаррисона Шмита, по профессии геолога, побывавшего на Луне в составе американской экспедиции «Аполло-17», использование гелия-3, включая все виды расходов на его добычу и доставку, станет коммерчески выгодным, когда производство термоядерной энергии на гелии-3 на Земле достигнет мощности 5 Гвт. По мнению Шмита, предварительные расходы на стадии research & development (исследование и развитие), которые, очевидно, должно взять на себя государство, составят около 15 млрд. долларов. Затем лунный энергетический проект станет привлекательным для частных инвестиций, поскольку он станет прибыльным.

Лунная промышленность

Добыча гелия-3 неизбежно вызывает к жизни целый ряд сопряженных производств. При переработке грунта и десорбции гелия выделяться будет не только гелий, но в еще больших объемах другие элементы, в том числе водород и углерод. Нетрудно также наладить производство кислорода из силикатов. Это значит, что непосредственно на Луне можно организовать производство топлива и окислителя для ракет-носителей.

Лунный грунт богат титаном. Выплавка титана позволит производить тяжелые элементы конструкции и корпусов ракет прямо на Луне. С Земли придется доставлять только высокотехнологичные элементы. Необходимая для жизнедеятельности людей и некоторых технологических процессов вода также может производиться на Луне.

Развертывание постоянных лунных баз позволит использовать пребывание человека на Луне не только для добычи гелия-3, но и для других целей. Луна – самый экономичный космодром, который сделает доступным крупномасштабное исследование Солнечной системы. На Луне могут и должны быть развернуты системы контроля астероидной опасности, мониторинга и раннего предупреждения катастрофических явлений и событий на Земле, исследования дальнего космоса и многое другое, что сейчас даже трудно представить.

Что для реализации всего этого нужно сделать?

Прежде всего нужно осознать, что нехватка энергии в ближайшие десятилетия – это реальная проблема для всех жителей Земли, от которой не спрятаться, не уйти. Во-вторых, по-видимому, единственным тотальным и долговременным решением ее, одновременно удовлетворяющим условиям энергетической эффективности и экологической безопасности, является термоядерный синтез на основе использования гелия-3. В-третьих, освоение этого источника энергии – это не очередной проект, который можно решать между делом. Речь идет о гигантской промышленной революции, полное осуществление которой займет, может быть, целое столетие.

Одновременно в нашем сознании поэтический образ далекой Луны должен смениться представлением об объекте практической экономики. После великих географических открытий прошлых веков Луна – это следующий объект приложения изыскательского духа, свойственного человечеству. По последствиям для развития цивилизации освоение Луны аналогично освоению новых континентов. Луна и есть – новый континент, отделенный от Земли океаном космического пространства, который сегодня, однако, легче пересечь, чем Атлантический океан во времена Колумба.

Шаг за шагом – за гелием-3

Несмотря на все эти перспективы, приходится признать тот факт, что пока мы еще очень далеки от возможности их реализации. Когда можно ожидать построения установок термоядерного синтеза на гелии-3? По данным из американских источников, возможно, уже через 15–20 лет, если на этом будут сфокусированы усилия общества и соответствующие инвестиции. Возможно, решение нужно искать на пути синтеза с инерционным удержанием плазмы, а не магнитным удержанием, которое используется в ТОКАМАКах и заложено в основу проекта ИТЭР. Некоторые успешные эксперименты с использованием лазеров и инерционным удержанием уже проведены в США.

Ясно, что гелий-3 понадобится возить с Луны не раньше, чем лет через двадцать. Но для того, чтобы привезти с Луны первую тонну гелия-3, нужно проделать грандиозную работу. Как всегда, когда приступают к разработке какого-либо вида минерального сырья, нужно начать с геологоразведочных работ. Они включают картирование поверхности Луны, выявление и оконтуривание участков с максимальным содержанием полезных компонентов, оценку удобства их эксплуатации. Эта работа должна сопровождаться исследованием геологического строения Луны, выявлением ресурсов для развития локального производства. В том числе большое значение имеет решение вопроса о наличии воды на Луне. Вода в замороженном состоянии может присутствовать в затененных кратерах на полюсах Луны. Свидетельства к этому имеются. Необходима организация экспедиций и исследование образцов с этих участков Луны.

Под ногами американских астронавтов – энергетическое Эльдорадо.
Фото NASA
Следующий шаг – проведение экспериментальных вскрышных работ и работ по десорбции летучих из реголита в условиях Луны. Далее – обустройство лунной базы. Проектирование и испытание устройств, предназначенных для производства гелия-3. Для того чтобы обеспечить только подготовительную стадию работ, понадобится доставить на Луну сотни тонн машин и материалов. Интенсивность полетов на трассе Земля–Луна должна составить несколько запусков в год. Сегодня у нас в программе только один запуск аппарата «Луна-Глоб», запланированный на 2012 год.

Страна, которая опередит другие в освоении Луны, станет лидером в мировой экономике. У России есть уникальные шансы. Мы имеем космическую индустрию и опыт освоения Луны автоматическими космическими аппаратами. Мы имеем развитую ядерную физику и атомную энергетику. За счет добычи нефти и газа страна получила огромные деньги, которые без риска дестабилизировать финансовую ситуацию можно вложить только в наукоемкие высокие технологии. Разумно направить эти деньги на проект, имеющий целью замещение их источника.


Комментарии для элемента не найдены.

Читайте также


Открытое письмо Анатолия Сульянова Генпрокурору РФ Игорю Краснову

0
1456
Энергетика как искусство

Энергетика как искусство

Василий Матвеев

Участники выставки в Иркутске художественно переосмыслили работу важнейшей отрасли

0
1660
Подмосковье переходит на новые лифты

Подмосковье переходит на новые лифты

Георгий Соловьев

В домах региона устанавливают несколько сотен современных подъемников ежегодно

0
1768
Владимир Путин выступил в роли отца Отечества

Владимир Путин выступил в роли отца Отечества

Анастасия Башкатова

Геннадий Петров

Президент рассказал о тревогах в связи с инфляцией, достижениях в Сирии и о России как единой семье

0
4080

Другие новости