0
3859
Газета Наука и технологии Интернет-версия

14.09.2011 00:00:00

Солнечная энергия: с орбиты – на Землю

Тэги: космос, энергия, сэу


космос, энергия, сэу Один из проектов передачи энергии с орбитальной станции на Землю.
Фото NASA

Вопросы эффективности создания и использования космических энергетических систем для широкого круга транспортных прикладных задач космической техники – одна из самых актуальных проблем современной космической науки. Журналист Николай ДРОЖКИН беседует с ведущим научным сотрудником ЦНИИмаша, доктором технических наук, профессором Виталием МЕЛЬНИКОВЫМ. Свои исследования ученый проводит на базе анализа полувекового опыта разработки и эксплуатации таких систем с учетом новейших и прогнозируемых достижений в технике, а также потребностей общества.

– Виталий Михайлович, судя по публикациям в СМИ, основными направлениями сегодня считаются развитие средств связи и мониторинга, освоение Луны и Марса. Но вот книга «Центробежные бескаркасные крупногабаритные космические конструкции» (М., 2009, авторы Г.Г.Райкунов, В.А.Комков, В.М.Мельников, Б.Н.Харлов). По-видимому, вы, как ее соавтор, считаете наиболее приоритетным создание космических электростанций?

– Только социально-политическая потребность общества определяет темп развития космической техники. Исходя из этого, рассмотрим с сегодняшних позиций изложенные в директивных документах приоритетные направления ее развития.

Дальнейшее успешное продвижение нашей страны в решении вопросов социально-экономического развития требует обеспечения всестороннего доступа населения к дешевым информационным услугам, непрерывного мониторинга территории и воздушного пространства, контроля сухопутных и морских границ с пресечением браконьерства, получения информации, позволяющей вырабатывать оперативные и стратегические решения о развитии регионов, ликвидации природных и техногенных катастроф, предупреждении и парировании внутренних и внешних угроз. Эти потребности, безусловно, будут определять темп развития космической энергетики.

– А вопросы освоения Луны и Марса?

– Луна давно считается стратегическим объектом, и существуют обоснованные программы ее освоения в США, Китае, Японии и России. Но что может дать Луна в плане народного хозяйства? Предлагаемая добыча гелия-3 из лунного грунта (реголита) для термоядерных реакторов вызывает недоумение. Во-первых, существуют крупные химические производства, где гелий-3 является побочным продуктом и в больших объемах выбрасывается в атмосферу за ненадобностью. Во-вторых, сама управляемая термоядерная реакция с участием гелия-3 не реализована в земных условиях.

Что касается Марса, полученная автоматами достаточно обширная информация указывает на то, что эта планета народно-хозяйственного интереса не представляет. Марсианские исследования имеют чисто научный характер. Ни о каком переселении людей на Марс и жизни там при средней температуре минус 63 градуса, в разреженной атмосфере, состоящей практически из углекислого газа, и речи быть не может.

– Какая же острая социально-политическая потребность общества может содействовать модернизации и инновационному развитию России?

– В последние годы со все возрастающей остротой встают проблемы энергетического и экологического кризисов, а также управления погодой. Эффективный путь решения указанных проблем – создание космических солнечных электростанций (КСЭС) мощностью от 1 до 10 гигаватт для трансляции электроэнергии наземным потребителям и электроснабжения в перспективе экологически вредных производств в космосе. Американское военное ведомство, например, выдвинуло программу, в которой рассматривается возможность замены всей наземной энергетики космической к 2100 году.

В США кооперация, в которую входят компании «Локхид-Мартин», «Боинг», JPL «Центр Маршалла», Центр Глена и ряд университетов, планирует создать коммерческую КСЭС гигаваттного уровня к 2016 году. Цель – положить начало созданию рынка «космического электричества». Китай намерен участвовать в этом рынке.

Группа японских корпораций во главе с Mitsubishi Corporation планирует построить КСЭС гигаваттного уровня к 2025 году в рамках проекта Solarbird. Общая стоимость КСЭС оценивается в 24 миллиарда долларов. Планируемая стоимость вырабатываемого «космического электричества» в шесть раз меньше, чем на японских наземных электростанциях. После мартовских аварий 2011 года в Японии одновременно на трех атомных реакторах, общественное и правительственное мнение во многих странах склонилось в пользу альтернативных источников энергии, где солнечная энергетика играет главенствующую роль.

Наивысшую прибыль от мирового рынка «космического электричества» получат те, кто освоит его первым. Как видите, США и Япония активнейшим образом стремятся создать такой рынок. Китай также его поддерживает. Направление создания КСЭС в ближайшей и дальней перспективе в новых экономических условиях может определять темп развития космической техники и содействовать модернизации и инновационному развитию России, способствовать решению социальных и политических задач.

– А как же быть с космическими ядерными энергетическими установками (ЯЭУ), о работах по которым много говорилось в последнее время, в том числе и на самом высоком уровне?


МКС вся приспособлена под солнечные батареи.
Фото NASA

– На основании анализа 50-летнего опыта разработок космических ЯЭУ и сложности решения стоящих на пути их создания задач можно прийти к выводу, что использование ядерной энергетики – далеко не эффективный путь решения задач космической техники. Развитие ЯЭУ для межорбитальных и межпланетных буксиров в настоящий момент и в перспективе для широкого круга задач нецелесообразно по ряду обстоятельств.

Во-первых, в разработку энергодвигательных космических установок на базе ядерных реакторов в течение более 50 лет вкладывались огромные финансовые и интеллектуальные ресурсы, при этом ощутимого выхода от этих вложений не наблюдалось, и из-за объективных трудностей последовательно свертывались работы по большому числу направлений.

Во-вторых, в связи с выходом из-под юрисдикции России расположенных на территории бывших союзных республик ряда крупных предприятий, ранее занимавшихся вопросами проектирования, разработки и изготовления комплектующих изделий в атомной отрасли, а также испытательных полигонов, существенно сократился научно-технический потенциал, который был присущ бывшему СССР. Нарушена практически вся инфраструктура в области создания реакторов космического базирования, имеются серьезные проблемы с кадровым потенциалом.

В-третьих, необходимо считаться с мнением международного сообщества, которое как ранее, после чернобыльской аварии, так и в особой мере после аварий сразу на трех АЭС в Японии настроено против вынесения в космос ядерной энергетики.

И, наконец, необходимо учитывать общее снижение в последние годы технической культуры и надежности изделий как космической техники (недавняя авария ракеты-носителя при запуске трех спутников системы ГЛОНАСС, отказы на 19 космических аппаратах в 2010 году), так и в других отраслях (например, авария на Саяно-Шушенской ГЭС). Все это осложняет создание и эксплуатацию изделий атомной промышленности.

Таким образом, оценивая с сегодняшних позиций возможности реализации различных схем ЯЭУ, можно прийти к выводу о преимуществе вложения сил и средств в солнечную энергетику. Особенно если учесть большие успехи ее развития в последние годы, широкий фронт работ по повышению эффективности во всем мире, ряд существенных преимуществ перед ЯЭУ и перспективы к совершенствованию на базе интенсивно развивающихся нанотехнологий.

– Какие существенные преимущества имеет солнечная энергетика перед ЯЭУ?

– Солнечные энергоустановки значительно проще по конструкции: не имеют высокотемпературных контуров, холодильников-излучателей, вращающихся турбин, делящегося урана, радиационной защиты. Они экологически чисты, не несут катастрофических последствий при авариях в космосе, при создании и отработке на Земле, а также при запусках с Земли и возвращении на Землю. СЭУ допускают техническое обслуживание и ремонт на орбите в процессе эксплуатации; не несут проблем утилизации или захоронения; значительно дешевле при крупномасштабном производстве. СЭУ в 3–5 раз лучше по удельным (Вт/кг) характеристикам. Они имеют многолетний (начиная с третьего искусственного спутника Земли) успешный опыт создания и эксплуатации на подавляющем большинстве космических аппаратов (более 1000) отечественного и зарубежного производства, в том числе около десяти лет на орбитальных станциях «Мир» и МКС при мощности солнечных батарей (СБ) порядка 120 киловатт.

Кроме того, в плане развития нанотехнологий СЭУ имеют большие перспективы. Они относительно просты в наземной отработке, допускают бескаркасное центробежное исполнение и автоматизированное раскрытие и сворачивание на орбите, не имеют в таком исполнении геометрических ограничений для задач в ближайшей и дальней перспективе. Допускается их компоновка на ракете-носителе в уложенном (транспортном) состоянии; эффективны в околоземном пространстве (в районе орбиты Земли солнечная постоянная равна 1360 Вт/м2), а также в районе орбит Марса и Венеры; не требуют привлечения огромных финансовых, организационных и научно-технических ресурсов; быстро окупаемы в силу большой коммерческой эффективности и широкого спектра приложений. Наконец, СЭУ имеют широкое поле наземного использования.

– Если у СЭУ нет недостатков, они могут вообще вытеснить ЯЭУ из космонавтики?

– Но у СЭУ есть недостатки. Прежде всего это невозможность функционирования в дальнем космосе на большом удалении от Солнца. В этом плане использование ЯЭУ безальтернативно. Вклад таких задач в сравнении с другими направлениями приложения космической энергетики относительно мал. Тем не менее эта ниша существует, имеет актуальность, и ЯЭУ, безусловно, должны развиваться для указанных задач и в условиях соответствующего режима.

Напомню также, что в советский период был осуществлен широкий фронт работ по проектным, конструкторским, материаловедческим вопросам, а также большой комплекс экспериментальных исследований и отработки ключевых элементов термоэмиссионной схемы ЯЭУ, показавших свое преимущество над турбомашиной и выведших нашу страну в лидеры по разработкам космических ЯЭУ. Этот задел должен быть использован – для решения задач исследования дальнего космоса, для создания термоэмиссионных ЯЭУ на базе наиболее перспективных литий-ниобиевых технологий, а также термоэлектрических ЯЭУ на базе радиоизотопов.


Комментарии для элемента не найдены.

Читайте также


Евгения Добровольская ушла из жизни, отметив юбилей

Евгения Добровольская ушла из жизни, отметив юбилей

Елизавета Авдошина

Народной артистке России было 60 лет

0
2165
От иностранных агентов очистят соцсети и видеоигры

От иностранных агентов очистят соцсети и видеоигры

Иван Родин

Задачей Госдумы становится законодательная блокировка "деструктива" в интернете

0
3116
Каркас страны укрепят опорные населенные пункты

Каркас страны укрепят опорные населенные пункты

Ольга Соловьева

В новой Стратегии пространственного развития РФ малым городам и селам обещаны стимулы для экономического роста

0
3557
Государство взвалило пробацию на НКО

Государство взвалило пробацию на НКО

Екатерина Трифонова

Ресоциализацию экс-заключенных одни общественные организации не вытянут

0
2670

Другие новости