Многослойная тонкопленочная панель с электрон-дырочными слоями (n и р) и двумя слоями CIGS и CZTSSe. |
Сначала когерентный поток микроволнового излучения получили советские физики Николай Басов и Александр Прохоров. Затем ту же операцию с фотонами проделал Чарлз Таунс. Все трое и получили Нобелевскую премию в 1964 году. Рентгеновские лазеры позволяют благодаря ничтожно малой длине волны рассмотреть с атомным разрешением даже биомолекулы.
Со временем лазеры стали использовать для охлаждения термически неспокойных атомов, отнимая у них с помощью фотонов частичку энергии колебаний-вибраций. В результате был получен конденсат Бозе–Эйнштейна (ВЕС). Еще выяснилось, что колебания частиц в среде порождают так называемые фононы, которые также можно «когерировать». Это открывало дорогу к созданию фононного лазера, имеющего определенные преимущества перед привычным фотонным лазером. Дело в том, что фотоны слабо взаимодействуют с веществом, что, кстати, ограничивает рост эффективности солнечных батарей-панелей.
Сотрудники Физического института в Бонне вместе с бразильскими коллегами Университета в г. Рио-Негро сумели поместить ВЕС в ловушку между двумя слоями DBR (дистрибутированными рефлекторами Брэгга). DBR не дают рассеиваться энергии конденсата Бозе–Эйнштейна ВЕС, в результате с двух его полюсов испускаются лучи фотонного и фононного лазеров.
Конденсат Бозе–Эйнштейна в ловушке между двумя слоями-отражателями Брэгга: вверху зеленый луч фотонного лазера, внизу – красный фононного. |
Но рентгеновские лазеры слишком дороги и громоздки. В Оук-Ридже и Университете штата Небраска предложили для будущих сетей коммуникации использовать плазмоны, генерируемые фотонным потоком на конце металлизированного оптоволокна. Энергия квантов света генерирует электронную «общность» металлических электронов, коллективные осцилляции которых дают диодный лазер стоимостью не более 10 долл. Статья ученых в журнале New J. Physics называется «Поверхностный плазмон ускоренных электронов металла, нанесенного на наноокончания оптоволокна».
Естественно, что металлизация нановолокна невозможна без соответствующего масштаба технологии. И такие технологии существуют, они используются для получения так называемых 2D-пленочных материалов. Яркий пример – графеновый монослой. В 2D-пленках «работают» квантовые эффекты, которые теряются с увеличением размеров и, как следствие, нарастанием паразитических вибраций в среде.
Возникновение «неровностей» (ripples) на поверхности молекулы йодида этана. Иллюстрации Physorg |
Столь высокий показатель эффективности солнечной батареи сделает солнечную энергию вполне рентабельной и используемой в широких масштабах. Устройства с таким КПД могут превратить Сахару и Австралию в новые энергетические «эмираты». Нефть останется лишь для различных органических синтезов.
комментарии(0)