0
7309
Газета Наука Интернет-версия

13.09.2022 19:09:00

Пока физикам остается только чесать в затылках, пытаясь объяснить квантово-механический мир

Нестандартные страсти по Стандартной модели

Тэги: nica, физика, квантовая физика, квантовая механика


nica, физика, квантовая физика, квантовая механика Графика freepik.com

Тем, кому посчастливилось посетить парижский Лувр, не забыть статуи греческой богини победы Ники – без головы, но с крылами. Под ее имя и подгадали аббревиатуру – NICA: Нуклотрон-ионный коллайдер. В 2022 году этот ускоритель элементарных частиц должен начать работу в Дубне.

Коллайдер своим названием подразумевает «коллизию» – сталкивание разогнанных пучков нуклонов, то есть частиц ядра и, в частности, протонов (р+), а также тяжелых ионов, например положительно заряженных ионов золота (Au). Академик Григорий Трубников «обещает», что протонные пучки будут разгоняться до фантастической энергии 12,6 ГэВ, что чуть ли не в два раза больше, чем в БАКе (Большом адронном коллайдере в Европейском центре ядерных исследований в Женеве). Трубников отмечает также, что NICA позволит получать кварк-глюонную плазму. Это состояние вещества существовало непосредственно сразу после Большого взрыва. Только после ее остывания примерно с 12 млн градусов кварки начали «склеиваться» с помощью глюонов (от англ. glue – клей) в протоны и нейтроны, образуя атомные ядра.

Словари определяют взаимодействие кварков и глюонов как квантовые, а вернее, квантово-хромодинамические. Известен также бета-распад, при котором из ядра «вылетает» электрон, а в нем нейтрон превращается в протон. Ричард Фейнман, лауреат Нобелевской премии по физике 1985 года, представил распад в виде наглядной диаграммы, показывающей и испускание нейтрино.

Квантовая хромодинамика идет рука об руку с квантовой электродинамикой, которая описывает взаимодействие электромагнитного поля с заряженными частицами – электроном, позитроном и мюоном. Последний в 207 раз тяжелее электрона, но все равно относится к легким частицам – лептонам. Мюон рождается в ходе реакций на краткий миг, исчисляемый миллионными долями секунды, но тем не менее «успевает» обзавестись аномальным магнитным моментом или окружающим его магнитным полем.

Кварки и глюоны, распады и образующиеся в них частицы, включая нейтрино, описываются весьма практичной Стандартной моделью (СМ), которая подвергается постоянной критике, но пока довольно устойчива.

В свое время венгр Лоранд Этвёш установил равенство гравитационной и инерционной масс. На этот факт опирался в своих расчетах Альберт Эйнштейн при создании общей теории относительности (ОТО), в которой предсказывалось существование гравитационных волн. Исходя из предсказаний квантовой хромодинамики, ученые Будапештского университета им. Этвёша, а также Марсельского и Вуппертальского университетов в 2020–2021 годах сформировали коллаборацию по определению величины мюонного магнитного поля, которая согласовывалась бы со Стандартной моделью.

Надо сказать, что сегодня много говорят о квантовых не только компьютерах и коллаборациях. Проблема, однако, в том, что квантовые процессы «сохраняются» лишь при сверхнизких температурах, что мешает развитию квантовой техники. Выход найден в «параллельном» использовании света, распространение которого не зависит от охлаждения или нагревания. С использованием этого принципа в квантово-оптических сенсорах университет германского г. Ульм создал первый квантовый микрофон, позволяющий различать смысл слов, произносимых одновременно полусотней говорящих.

Но вернемся к мюону и эксперименту лаборатории Ферми в чикагском Брукхейвене. Журнал Nature предпослал рассказу о новой попытке максимально точно определить величину магнитного момента мюона драматический заголовок: «Поколеблена ли Стандартная модель? Физики много говорят о полученных результатах». В Фермилаб для получения большего количества мюонов построили специальный кольцевой накопитель, но тем не менее прорыва не случилось.

Редакция журнала отмечает, что ученые «чешут в затылке» (scratch their heads), но тем не менее СМ пока устояла. Вполне может статься, что решению фундаментальной проблемы помогут эксперименты на новом коллайдерном комплексе NICA…  


Читайте также


Что делает космологию экспериментальной наукой

Что делает космологию экспериментальной наукой

Иван Сапрыкин

Гравитационные волны становятся привычным объектом изучения для физиков

0
6394
С точностью до одного фотона

С точностью до одного фотона

Максим Ухин

Металинзы позволяют манипулировать испусканием квантов света с разной длиной волны и формой

0
4694
Мир надлунный и подлунный

Мир надлунный и подлунный

Алекс Громов

Новое издание виднейшего мыслителя средневекового Востока

0
1888
Квантовые теории о главном

Квантовые теории о главном

Александр Спирин

Физикам удалось отследить нарушение когерентности одиночных электронных спинов

0
10813

Другие новости