0
34503
Газета Наука и технологии Интернет-версия

21.05.2024 16:25:00

Проверка не в пользу Эйнштейна. Квантовая физика как реальность и расчетная схема

Александр Печенкин

Об авторе: Александр Александрович Печенкин – доктор философских наук, профессор философского факультета МГУ им. М.В. Ломоносова; главный научный сотрудник Института истории естествознания и техники РАН им. С.И. Вавилова.

Тэги: квантовая физика, эйнштейн, гейзенберг


8-14-2480.jpg
Нобелевский лауреат по физике (2020)
Роджер Пенроуз в 2023 году принял участие
в Парижской конференции по философским
проблемам квантовой механики.  Фото Reuters
В 2025 году исполняется 100 лет квантовой механике, а в нынешнем, 2024-м – 60 лет неравенству Белла, одному из методологически и философски важных математических соотношений. Оно было получено с целью демонстрации фундаментального статуса квантовой механики как физической теории.

В 1925 году молодой немецкий физик Вернер Гейзенберг опубликовал статью «О квантово-теоретической переинтерпретации (Umdeutung) классических кинематических и механических соотношений». В ней Гейзенберг сформулировал ряд исходных позиций новой квантовой теории, пришедшей на смену старой наглядной квантовой теории Бора–Зоммерфельда, генетически связанной с планетарной электронно-ядерной моделью атома (русский перевод статьи В. Гейзенберга опубликован в журнале «Успехи физических наук», т. 122, вып. 4, 1977, с. 574–586).

Гейзенберг в своей статье не решал новых задач. Он логически последовательно излагал уже полученные результаты, касающиеся атомных спектров и теории дисперсии, в которую он сам в своих работах 1924 года внес вклад.

За статьей Гейзенберга последовала статья двух немецких физиков и математиков – Макса Борна и Паскуаля Иордана. В этой работе математический аппарат Гейзенберга был изложен на базе математики матриц (теория Гейзенберга–Борна–Иордана получила название матричной механики). Ничего удивительного, что за статьей Борна и Иордана в 1926 году последовала статья, впоследствии получившая известность как «статья трех авторов» – Борна, Гейзенберга и Иордана, в которой систематически излагалась матричная формулировка квантовой механики.

Альтернативную формулировку квантовой механики (волновую формулировку) опубликовал в 1926 году австрийский физик-теоретик Эрвин Шрёдингер. Он же показал эквивалентность (или, как отметил историк и философ науки Н.Р. Хэнсон, «взаимопереводимость») матричной и волновой формулировок квантовой механики. Квантовую механику как единую теорию изложил английский физик-теоретик Поль Дирак в книге «Принципы квантовой механики» (1930), а затем Иоганн фон Нейман (1932), преодолевший некоторые логические непоследовательности, имевшиеся у Дирака, и развивший квантовую теорию измерений. «Заслуга автора, – писал редактор русского издания книги фон Неймана физик, академик Николай Боголюбов, – состоит в том, что он придал квантовой механике логически последовательную форму, излагая ее как последовательную теорию, в которой не остается невыясненным ни один принципиальный момент» (И. фон Нейман. Математические основы квантовой механики, М., 1964, с. 13).

Затем наступила эра решения задач и издания учебников. Интересно, однако, что в связи с формулированием и развитием квантовой механики возникли философские дискуссии, продолжающиеся по сей день. Об этом свидетельствует, в частности, «Оксфордская книга квантовых интерпретаций», изданная в 2022 году, и состоявшаяся в 2023 году в Париже конференция по философским проблемам квантовой механики. В конференции приняли участие два нобелевских лауреата: французский физик Ален Аспе (Нобелевская премия по физике 2022 года) и английский математик и физик Роджер Пенроуз (Нобелевская премия по физике 2020 года).

Центральной философской проблемой, вокруг которой разворачивались философские дискуссии, касающиеся квантовой механики, оказалась проблема реальности: представляет ли квантовая механика существенные свойства объективно существующей реальности или же это расчетная схема, позволяющая получать полезные результаты, предсказывать те или иные явления?

Дискуссии начались уже в конце 1920-х годов. В 1927 году Вернер Гейзенберг, автор первой статьи по современной квантовой механике, вывел соотношение неопределенностей, устанавливающее предел точности измерения координаты и импульса микрочастицы. Из соотношения неопределенностей следовало, что классическое понятие траектории неприменимо в квантовой механике.

Однако какова реальная картина мира? Соотношение неопределенностей устанавливает пределы возможности наших измерений или сама реальность такова, что в ней нет той определенности в отношении координаты и импульса частицы, которая предполагается классической физикой?

Существует огромная литература, посвященная дискуссиям об основаниях квантовой механики. Однако в связи с выводом неравенства Белла надо упомянуть прежде всего дискуссию между двумя физиками, внесшими вклад в формулирование квантовой механики, – дискуссию между Альбертом Эйнштейном и Нильсом Бором.

В 1935 году Эйнштейн с соавторами (Подольский, Розен) сформулировал свое точное понятие физической реальности, то есть реальности, которая должна быть представлена в физической теории, если последняя является полной. Если мы можем однозначно предсказать (рассчитать) значение некоторой физической величины, писал Эйнштейн с соавторами, то существует элемент реальности, выраженный данной физической величиной. Полной является физическая теория, в которой представлены все элементы физической реальности, относящиеся к области приложения этой теории. Эйнштейн и его соавторы провели мысленный эксперимент, показывающий, что квантовая механика неполна: в ней не представлены все элементы физической реальности, относящиеся к сфере приложения данной теории.

В чем состоял этот эксперимент. Воспроизведем то переложение этого мысленного эксперимента, которое дали Дэвид Бом и Якир Ааронов в 1957 году (Д. Бом – физик, написавший учебник по квантовой механике и интенсивно занимавшийся проблемой интерпретации этой теории, Ааронов – его ученик). Эксперимент Бома–Ааронова нагляден.

Пусть в нашем распоряжении находится пара электронов с противоположными спинами (спин – собственный момент количества движения элементарной частицы, но для нас достаточно приписать каждому из электронов этой пары стрелки: одну, направленную вверх, и одну, направленную вниз). Заметим, что спин можно измерить при помощи прибора Штерна–Герлаха, описанного в «Фейнмановских лекциях по физике», вып. 9 («Фейнмановские лекции» – известный учебник, вполне корректный, но не такой сложный, как, скажем, курс советских физиков Льва Ландау и Евгения Лифшица).

Согласно законам квантовой механики, электроны, входящие в состав пары электронов, должны иметь противоположные спины.

Пусть один из электронов этой пары остался у нас под руками (скажем, в Берлине), а второй был отправлен куда-то (скажем, в Мюнхен, а мы сами в Берлине). Проведя через час опыт в Берлине, мы нашли, что находящийся в нашем распоряжении электрон имеет спин, направленный вверх.

Проводя измерение спина в Берлине, мы разрушили электронную пару. У нас теперь нет электронной пары. Есть два электрона: в Берлине спин электрона направлен вверх, в Мюнхене же находится электрон, обладающий спином, направленным вниз.

А что было полчаса назад? Ведь мы не оказывали никакого воздействия на электрон, находящийся в Мюнхене. Следовательно, и полчаса назад спин электрона, находящегося в Мюнхене, тоже был направлен вниз. Но в аппарате квантовой механики это никак не представлено. Согласно аппарату этой теории, полчаса назад существовала электронная пара, в которой спин одного электрона (неизвестно какого) был направлен вверх, а спин другого электрона (неизвестно какого) был направлен вниз.

Датчанин Нильс Бор ответил на аргумент Эйнштейна–Подольского–Розена в том же 1935 году. Он не согласился с эйнштейновским определением физической реальности. Согласно Бору, реальным надо считать не только то, что предсказуемо (вычисляемо, выводимо), но и то, что измеряемо (определяемо на опыте). Реальность имеет операциональный аспект. Полчаса до измерения, проведенного в Берлине, у нас не было возможности определить спин электрона, находящегося в Мюнхене. Согласно условиям мысленного эксперимента, предложенного Эйнштейном и его соавторами, такая возможность у нас появилась только через час после того, как мы разделили электрону пару, сформированную в Берлине, и один из электронов отправили в Мюнхен.

Дискуссия между Эйнштейном, теми, кто его поддерживал и сейчас поддерживает, с одной стороны, и сторонниками позиции Бора, с другой, продолжается по сей день. Однако неравенство Белла внесло новый элемент в эту дискуссию.

Неравенство Белла представляет позицию Эйнштейна и его соавторов в точной математической форме, открытой экспериментальной проверке. И эта проверка началась, и она была не в пользу Эйнштейна и тех, кто настаивал на неполноте квантовой механики.

Выше было упомянуто совещание по философским проблемам квантовой механики, состоявшееся в прошлом году в Париже, и упомянуты два нобелевских лауреата, участвовавшие в этом совещании. Один из них, А. Аспе, получил Нобелевскую премию за свои эксперименты (1980-е годы), опровергающие неравенство Белла и тем самым подтверждающие полноту квантовой механики, подтверждающие позицию Бора.

Джон Белл также выдвигался в 1960 году на Нобелевскую премию, но выдвижение было отозвано, поскольку он умер в этом году, а Нобелевская премия не дается посмертно. Статья Дж. Белла и ее русский перевод напечатаны в журнале «Квантовая магия» (т. 5, вып. 2, 2008, с. 2160–2177). 


Читайте также


Похоже, нынешний Нобелевский комитет по физике руководствуется чем угодно, но только не физикой

Похоже, нынешний Нобелевский комитет по физике руководствуется чем угодно, но только не физикой

Дмитрий Квон

Домохозяйкина премия

0
2844
Внутри протона что-то шевелится

Внутри протона что-то шевелится

Виталий Антропов

Физики приблизились к тому, чтобы «распутать» феномен квантовой запутанности

0
34729
Высокие энергии начинаются с одного электрона

Высокие энергии начинаются с одного электрона

Максим Ухин

Физики предложили изменить путь к управляемой термоядерной реакции

0
10857

Другие новости